Practice Set 16 Small Sample Hypothesis Testing Using Student's t Test

Darin wants to determine whether there is a difference in the number of sick days taken by employees based upon their education. A sample of 11 high school graduates had a mean of 5 sick days per year and a standard deviation of 2.5 days. Twelve non-graduates averaged 10 sick days per year. Their standard deviation was 3.25 days. Is there a difference in sick days taken based upon education? Use the .01 level of significance.

Given
n ₁ = 11
$\bar{X}_1 = 5$
$S_1^2 = 2.5^2 = 6.25$
n ₂ = 12
$\bar{X}_2 = 10$
$S_2^2 = 3.25^2 = 10.56$
$\alpha = .01$

$$s_{W}^{2} = \frac{(n_{1}-1)s_{1}^{2} + (n_{2}-1)s_{2}^{2}}{n_{1} + n_{2} - 2}$$

$$= \frac{(11-1)6.25 + (12-1)10.56}{11 + 12 - 2}$$

$$= \frac{62.50 + 116.16}{21}$$

$$= 8.51$$

3. The test statistic is x̄.
4. df = n₁ + n₂ - 2 = 11 + 12 - 2 = 21 α = .01 and .01÷2 = .005 → t = ±2.831

5. Apply the decision rule.

1. $H_0: \mu_1 = \mu_2$ and $H_1: \mu_1 \neq \mu_2$

2. $\alpha = .01$

The 5-step approach to hypothesis testing

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{s_W^2(\frac{1}{n_1} + \frac{1}{n_2})}} = \frac{5 - 10}{\sqrt{8.51(\frac{1}{11} + \frac{1}{12})}} = -4.11$$

Reject H₀ because -4.11 is beyond - 2.831. Non-high school graduates took a different number of sick days than high school graduates.

II. Darin conducted a training program for 5 recently-hired employees. Test at the .01 level whether the training program increased employee efficiency.

Employee	Efficiency Rating			
	Before	After	d	d ²
1	8	9	-1	1
2	6	8	-2	4
3	7	8	-1	1
4	7	9	-2	4
5	8	10	<u>-2</u>	_4
-			-8	14

$$\bar{d} = \frac{\sum d}{n} = \frac{-8}{5} = -1.6$$

$$S_d = \sqrt{\frac{\sum d^2 - \frac{(\sum d)^2}{n}}{n-1}}$$

$$= \sqrt{\frac{14 - \frac{-8^2}{5}}{5 - 1}}$$

$$= \sqrt{\frac{14 - 12.8}{4}}$$

$$= .5477$$

The 5-step approach to hypothesis testing

1.
$$H_0: \mu_d \ge 0$$
 and $H_1: \mu_d < 0$

2.
$$\alpha = .01$$

3. The test statistic is \overline{d} .

4.
$$df = n - 1 = 5 - 1 = 4$$
 and α of .01 $\rightarrow t = -3.747$

5. Apply the decision rule.

$$t = \frac{\frac{\bar{d}}{s_d}}{\frac{s_d}{\sqrt{n}}} = \frac{\frac{-1.6}{.5477}}{\frac{.5477}{\sqrt{5}}} = \frac{-1.6}{.245} = -6.53$$

Reject H₀ because - 6.53 is beyond -3.747.

Training increased efficiency.

Note: H₀ points to the left and t is negative. Why? When scores increase, their difference is negative.